Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
J Econ Entomol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38603568

RESUMO

Transgenic crops producing Bacillus thuringiensis (Bt) toxins are commonly used for controlling insect pests. Nearby refuges of non-Bt host plants play a central role in delaying the evolution of resistance to Bt toxins by pests. Pervasive fitness costs associated with resistance, which entail lower fitness of resistant than susceptible individuals in refuges, can increase the ability of refuges to delay resistance. Moreover, these costs are affected  by environmental factors such as host plant suitability, implying that manipulating refuge plant suitability could improve the success of the refuge strategy. Based on results from a previous study of Trichoplusia ni resistant to Bt sprays, it was proposed that low-suitability host plants could magnify costs. To test this hypothesis, we investigated the association between host plant suitability and fitness costs for 80 observations from 30 cases reported in 18 studies of 8 pest species from 5 countries. Consistent with the hypothesis, the association between plant suitability and fitness cost was negative. With plant suitability scaled to range from 0 (low) to 1 (high), the expected cost was 20.7% with a suitability of 1 and the fitness cost increased 2.5% for each 0.1 decrease in suitability. The most common type of resistance to Bt toxins involves mutations affecting a few types of midgut proteins to which Bt toxins bind to kill insects. A better understanding of how such mutations interact with host plant suitability to generate fitness costs could be useful for enhancing the refuge strategy and sustaining the efficacy of Bt crops.

2.
PLoS One ; 18(11): e0289060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011106

RESUMO

Fall armyworm (FAW) is a global agricultural pest, causing substantial economic losses in corn and many other crops. Complicating efforts to control this pest is its capacity for long distance flights, which has been described in greatest detail for the central and eastern sections of the United States. FAW infestations are also routinely found in agricultural areas in southern Arizona, which lie beyond the western limits of the mapped migratory pathways. Climate suitability analysis found that the affected Arizona locations cannot support permanent FAW populations, indicating that these FAW most likely arise from annual migrations. A better understanding of this migration would provide insights into how large moth populations can move across desert habitats as well as the degree of gene flow occurring between FAW populations across the North American continent. In this study the Arizona populations were genetically characterized and compared to a selection of permanent and migratory FAW from multiple sites in the United States and Mexico. The results are consistent with migratory contributions from permanent populations in the states of Texas (United States) and Sinaloa (Mexico), while also providing evidence of significant barriers to gene flow between populations within Mexico. An unexpected finding was that two genetically distinct FAW subpopulations known as "host strains" have a differential distribution in the southwest that may indicate significant differences in their migration behavior in this region. These findings indicate that the combination of mitochondrial and Z-linked markers have advantages in comparing FAW populations that can complement and extend the findings from other methods.


Assuntos
Migração Animal , Zea mays , Animais , Texas , México , Spodoptera/genética , Arizona
3.
J Econ Entomol ; 116(5): 1830-1837, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37738568

RESUMO

The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is a cosmopolitan pest that exploits more than 350 host plants, including economically important crops such as corn, cotton and rice. Control of S. frugiperda largely relies on transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) and spraying synthetic insecticides. Here, we established the susceptibility and diagnostic concentration for 2 Bt toxins and 5 newer insecticides in invasive populations of S. frugiperda from southeastern China. Concentrations causing 50% mortality (LC50) in ten field populations sampled in 2022 ranged from 2.13 to 19.29 and 22.43 to 71.12 ng/cm2 for Cry1Fa and Vip3Aa, and 0.83 to 5.30, 2.83 to 9.94, 0.04 to 0.23, 4.59 to 8.40, and 1.49 to 6.79 mg/liter for chlorantraniliprole, chlorfenapyr, emamectin benzoate, indoxacarb, and spinosad, respectively. Relative to the susceptible strain YJ-19, the largest resistance ratio in the field populations was 5.1, 1.6, 6.2, 3.9, 4.6, 2.2, and 3.6 for Cry1Fa, Vip3Aa, chlorantraniliprole, chlorfenapyr, emamectin benzoate, indoxacarb, and spinosad, respectively, indicating that the field populations were generally susceptible to these Bt toxins and insecticides. Based on the pooled response of the field populations, the diagnostic concentration for resistance monitoring, estimated as ca. twice the LC99, was 400 and 1,500 ng/cm2 for Cry1Fa and Vip3Aa, and 2, 40, 60, 60, and 100 mg/liter for emamectin benzoate, chlorantraniliprole, chlorfenapyr, spinosad, and indoxacarb, respectively. These results provide useful information for monitoring resistance to key Bt toxins and insecticides for the control of S. frugiperda in China.

4.
J Econ Entomol ; 116(5): 1804-1811, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37555261

RESUMO

The polyphagous pest Helicoverpa zea (Lepidoptera: Noctuidae) has evolved practical resistance to transgenic corn and cotton producing Cry1 and Cry2 crystal proteins from Bacillus thuringiensis (Bt) in several regions of the United States. However, the Bt vegetative insecticidal protein Vip3Aa produced by Bt corn and cotton remains effective against this pest. To advance knowledge of resistance to Vip3Aa, we selected a strain of H. zea for resistance to Vip3Aa in the laboratory. After 28 generations of continuous selection, the resistance ratio was 267 for the selected strain (GA-R3) relative to a strain not selected with Vip3Aa (GA). Resistance was autosomal and almost completely recessive at a concentration killing all individuals from GA. Declines in resistance in heterogeneous strains containing a mixture of susceptible and resistant individuals reared in the absence of Vip3Aa indicate a fitness cost was associated with resistance. Previously reported cases of laboratory-selected resistance to Vip3Aa in lepidopteran pests often show partially or completely recessive resistance at high concentrations and fitness costs. Abundant refuges of non-Bt host plants can maximize the benefits of such costs for sustaining the efficacy of Vip3Aa against target pests.


Assuntos
Bacillus thuringiensis , Lepidópteros , Mariposas , Animais , Estados Unidos , Zea mays/genética , Endotoxinas/farmacologia , Resistência a Inseticidas/genética , Toxinas de Bacillus thuringiensis , Proteínas Hemolisinas/farmacologia , Mariposas/genética , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Plantas Geneticamente Modificadas/genética
5.
Plant Dis ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537793

RESUMO

Tomato spotted wilt virus (TSWV, family Tospoviridae, genus Orthotospovirus) is a thrips-vectored pathogen that infects lettuce (Lactuca sativa) and many vegetable crops (Kuo et al. 2014, Hasegawa et al. 2022). Another thrips-borne pathogen of lettuce, impatiens necrotic spot virus (INSV, Tospoviridae, Orthotospovirus), was first reported in 2021 in Yuma, Arizona (Hasegawa et al. 2022). Symptoms of both viruses in lettuce are similar and include necrotic spotting, leaf chlorosis and plant stunting (Kuo et al. 2014). Beginning February through April of 2022, lettuce displaying symptoms of orthotospovirus infection was collected from romaine lettuce (var. longifolia) fields in three regions of Yuma County. A total of 96 plants were collected (5 from Tacna on 2/21, 5 from Wellton on 2/21, 15 from Wellton on 3/23, 30 from Tacna on 4/4, 20 from Wellton on 4/4, and 21 from Yuma Valley on 4/4). The area of the fields ranged from 10 to 18 acres, and the percent disease incidence ranged from 0.8% (Tacna on 4/4) to 2.75% (Tacna on 2/21). Thrips vector were present in all fields were symptomatic plants were observed. One leaf disk per plant (8 mm in diameter) was sampled with a cork borer and grounded individually with a micro pestle in a 1.7 ml microcentrifuge tube with 150 ul of Tri-reagent (Molecular Research Center). Total RNA was extracted from each sample using the Zymo Direct-zol-96 kit (Zymo Research). Samples were diluted with water to a ratio of 1:10 after RNA extraction. RT-qPCR was performed in 20 ul reactions with 5 ul of input RNA using the PCR Biosystems qPCRBIO Probe 1-Step Go No-ROX for the cDNA/qPCR master mix. RT-qPCR assays were carried out in multiplex reactions using primers specific for TSWV and INSV, in addition to a lettuce internal control gene (LOC111918243), along with negative controls. Primer and probe sequence details are reported in supplemental Table 1. We used a cycle threshold (ct) < 40 to indicate a positive result for both INSV and TSWV (Chen et al. 2013; Boonham et al. 2002). RT-qPCR successfully amplified INSV in 90 out of 96 samples and TSWV in 8 out of 96 samples. These 8 samples tested positive for both TSWV and INSV, showing that INSV and TSWV co-infected lettuce plants. Thus overall, ∼ 95% of symptomatic plants were infected with INSV alone, and ∼ 8% were co-infected with TSWV and INSV. Amplicons of 4 samples testing positive for TSWV were sent for Sanger sequencing (Eurofins Genomics, Louisville, KY). All were identified as TSWV. One amplicon with TSWV was sequenced for INSV and double infection was confirmed. BLAST results from the NCBI nt database show 100% (138 bp) identity to TWSV (MW519211) for the 4 TWSV amplicons and 99.22% (137 bp) identity to INSV (KX790323) for the INSV amplicon. Sanger sequence data are in the GenBank (accession: OQ685940-OQ685944). Based on RT-qPCR results, all TSWV infected plants were also infected with INSV. INSV may have been introduced to Yuma by infected plants or thrips from lettuce transplants produced in California (Hasegawa et al. 2022). TSWV could have been introduced similarly. To our knowledge, this is the first report of TSWV infecting lettuce in Yuma and the first report of INSV and TSWV co-infecting lettuce. TSWV and INSV infections have remained low since their discovery in Yuma, in part due to effective cultural and chemical management by lettuce growers (Palumbo, 2022). However, an increase in disease incidence and severity in the future could have a significant negative impact on production of romaine lettuce in the region.

6.
Insects ; 14(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37504584

RESUMO

Transgenic corn and cotton that produce Cry and Vip3Aa toxins derived from Bacillus thuringiensis (Bt) are widely planted in the United States to control lepidopteran pests. The sustainability of these Bt crops is threatened because the corn earworm/bollworm, Helicoverpa zea (Boddie), is evolving a resistance to these toxins. Using Bt sweet corn as a sentinel plant to monitor the evolution of resistance, collaborators established 146 trials in twenty-five states and five Canadian provinces during 2020-2022. The study evaluated overall changes in the phenotypic frequency of resistance (the ratio of larval densities in Bt ears relative to densities in non-Bt ears) in H. zea populations and the range of resistance allele frequencies for Cry1Ab and Vip3Aa. The results revealed a widespread resistance to Cry1Ab, Cry2Ab2, and Cry1A.105 Cry toxins, with higher numbers of larvae surviving in Bt ears than in non-Bt ears at many trial locations. Depending on assumptions about the inheritance of resistance, allele frequencies for Cry1Ab ranged from 0.465 (dominant resistance) to 0.995 (recessive resistance). Although Vip3Aa provided high control efficacy against H. zea, the results show a notable increase in ear damage and a number of surviving older larvae, particularly at southern locations. Assuming recessive resistance, the estimated resistance allele frequencies for Vip3Aa ranged from 0.115 in the Gulf states to 0.032 at more northern locations. These findings indicate that better resistance management practices are urgently needed to sustain efficacy the of corn and cotton that produce Vip3Aa.

7.
Can J Aging ; 42(4): 642-656, 2023 12.
Artigo em Francês | MEDLINE | ID: mdl-37439110

RESUMO

La retraite au Canada a fait l'objet de plusieurs recherches, mais peu d'études ont comparé le passage de la vie active à la retraite des natifs et des immigrants ainsi que leurs caractéristiques une fois à la retraite, une lacune importante compte tenu de l'augmentation de la part des immigrants parmi les futures cohortes canadiennes de retraités. Cette étude descriptive vise à pallier cette lacune à l'aide des données de l'Enquête sociale générale de 2016. Les résultats montrent, entre autres, que les femmes et les hommes natifs ont plus de chances de prendre leur retraite que les immigrants, quel que soit le groupe d'âge étudié, et que l'âge moyen à la retraite des femmes et hommes immigrants est de deux ans supérieur à celui des natifs. Cette étude suggère que le statut d'immigrant implique une transition vers la retraite différente de celle vécue par les natifs ; différence qui devrait être considérée dans la structure du système de revenus de retraite.

8.
J Econ Entomol ; 116(2): 269-274, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37018465

RESUMO

Crops genetically engineered to produce insect-killing proteins from Bacillus thuringiensis (Bt) have revolutionized management of some major pests, but their efficacy is reduced when pests evolve resistance. Practical resistance, which is field-evolved resistance that reduces the efficacy of Bt crops and has practical implications for pest management, has been reported in 26 cases in seven countries involving 11 pest species. This special collection includes six original papers that present a global perspective on field-evolved resistance to Bt crops. One is a synthetic review providing a comprehensive global summary of the status of the resistance or susceptibility to Bt crops of 24 pest species in 12 countries. Another evaluates the inheritance and fitness costs of resistance of Diabrotica virgifera virgifera to Gpp34/Tpp35Ab (formerly called Cry34/35Ab). Two papers describe and demonstrate advances in techniques for monitoring field-evolved resistance. One uses a modified F2 screen for resistance to Cry1Ac and Cry2Ab in Helicoverpa zea in the United States. The other uses genomics to analyze nonrecessive resistance to Cry1Ac in Helicoverpa armigera in China. Two papers provide multi-year monitoring data for resistance to Bt corn in Spain and Canada, respectively. The monitoring data from Spain evaluate responses to Cry1Ab of the corn borers Sesamia nonagrioides and Ostrinia nubilalis, whereas the data from Canada track responses of O. nubilalis to Cry1Ab, Cry1Fa, Cry1A.105, and Cry2Ab. We hope the new methods, results, and conclusions reported here will spur additional research and help to enhance the sustainability of current and future transgenic insecticidal crops.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/genética , Resistência a Inseticidas , Proteínas de Bactérias/genética , Plantas Geneticamente Modificadas , Mariposas/fisiologia , Produtos Agrícolas , Zea mays/genética , Endotoxinas , Proteínas Hemolisinas/genética
9.
Viruses ; 15(4)2023 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-37112832

RESUMO

Dengue transmission is determined by a complex set of interactions between the environment, Aedes aegypti mosquitoes, dengue viruses, and humans. Emergence in new geographic areas can be unpredictable, with some regions having established mosquito populations for decades without locally acquired transmission. Key factors such as mosquito longevity, temperature-driven extrinsic incubation period (EIP), and vector-human contact can strongly influence the potential for disease transmission. To assess how these factors interact at the edge of the geographical range of dengue virus transmission, we conducted mosquito sampling in multiple urban areas located throughout the Arizona-Sonora desert region during the summer rainy seasons from 2013 to 2015. Mosquito population age structure, reflecting mosquito survivorship, was measured using a combination of parity analysis and relative gene expression of an age-related gene, SCP-1. Bloodmeal analysis was conducted on field collected blood-fed mosquitoes. Site-specific temperature was used to estimate the EIP, and this predicted EIP combined with mosquito age were combined to estimate the abundance of "potential" vectors (i.e., mosquitoes old enough to survive the EIP). Comparisons were made across cities by month and year. The dengue endemic cities Hermosillo and Ciudad Obregon, both in the state of Sonora, Mexico, had higher abundance of potential vectors than non-endemic Nogales, Sonora, Mexico. Interestingly, Tucson, Arizona consistently had a higher estimated abundance of potential vectors than dengue endemic regions of Sonora, Mexico. There were no observed city-level differences in species composition of blood meals. Combined, these data offer insights into the critical factors required for dengue transmission at the ecological edge of the mosquito's range. However, further research is needed to integrate an understanding of how social and additional environmental factors constrain and enhance dengue transmission in emerging regions.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Humanos , Arizona/epidemiologia , Temperatura , Mosquitos Vetores , Período de Incubação de Doenças Infecciosas
10.
Insects ; 14(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36975899

RESUMO

Insect pests are increasingly evolving practical resistance to insecticidal transgenic crops that produce Bacillus thuringiensis (Bt) proteins. Here, we analyzed data from the literature to evaluate the association between practical resistance to Bt crops and two pest traits: fitness costs and incomplete resistance. Fitness costs are negative effects of resistance alleles on fitness in the absence of Bt toxins. Incomplete resistance entails a lower fitness of resistant individuals on a Bt crop relative to a comparable non-Bt crop. In 66 studies evaluating strains of nine pest species from six countries, costs in resistant strains were lower in cases with practical resistance (14%) than without practical resistance (30%). Costs in F1 progeny from crosses between resistant and susceptible strains did not differ between cases with and without practical resistance. In 24 studies examining seven pest species from four countries, survival on the Bt crop relative to its non-Bt crop counterpart was higher in cases with practical resistance (0.76) than without practical resistance (0.43). Together with previous findings showing that the nonrecessive inheritance of resistance is associated with practical resistance, these results identify a syndrome associated with practical resistance to Bt crops. Further research on this resistance syndrome could help sustain the efficacy of Bt crops.

11.
Insects ; 14(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835770

RESUMO

Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) control some important insect pests. However, evolution of resistance by pests reduces the efficacy of Bt crops. Here we review resistance to Bt cotton in the pink bollworm, Pectinophora gossypiella, one of the world's most damaging pests of cotton. Field outcomes with Bt cotton and pink bollworm during the past quarter century differ markedly among the world's top three cotton-producing countries: practical resistance in India, sustained susceptibility in China, and eradication of this invasive lepidopteran pest from the United States achieved with Bt cotton and other tactics. We compared the molecular genetic basis of pink bollworm resistance between lab-selected strains from the U.S. and China and field-selected populations from India for two Bt proteins (Cry1Ac and Cry2Ab) produced in widely adopted Bt cotton. Both lab- and field-selected resistance are associated with mutations affecting the cadherin protein PgCad1 for Cry1Ac and the ATP-binding cassette transporter protein PgABCA2 for Cry2Ab. The results imply lab selection is useful for identifying genes important in field-evolved resistance to Bt crops, but not necessarily the specific mutations in those genes. The results also suggest that differences in management practices, rather than genetic constraints, caused the strikingly different outcomes among countries.

12.
J Econ Entomol ; 116(2): 297-309, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36610076

RESUMO

Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have improved pest management and reduced reliance on insecticide sprays. However, evolution of practical resistance by some pests has reduced the efficacy of Bt crops. We analyzed global resistance monitoring data for 24 pest species based on the first 25 yr of cultivation of Bt crops including corn, cotton, soybean, and sugarcane. Each of the 73 cases examined represents the response of one pest species in one country to one Bt toxin produced by one or more Bt crops. The cases of practical resistance rose from 3 in 2005 to 26 in 2020. Practical resistance has been documented in some populations of 11 pest species (nine lepidopterans and two coleopterans), collectively affecting nine widely used crystalline (Cry) Bt toxins in seven countries. Conversely, 30 cases reflect no decrease in susceptibility to Bt crops in populations of 16 pest species in 10 countries. The remaining 17 cases provide early warnings of resistance, which entail genetically based decreases in susceptibility without evidence of reduced field efficacy. The early warnings involve four Cry toxins and the Bt vegetative insecticidal protein Vip3Aa. Factors expected to favor sustained susceptibility include abundant refuges of non-Bt host plants, recessive inheritance of resistance, low resistance allele frequency, fitness costs, incomplete resistance, and redundant killing by multi-toxin Bt crops. Also, sufficiently abundant refuges can overcome some unfavorable conditions for other factors. These insights may help to increase the sustainability of current and future transgenic insecticidal crops.

13.
Insect Sci ; 30(4): 1118-1128, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36326623

RESUMO

Broflanilide is a novel meta-diamide insecticide that acts as a γ-aminobutyric acid-gated chloride channel allosteric modulator. With its unique mode of action, broflanilide has no known cross-resistance with existing insecticides and is expected to be an effective tool for the management of insecticide resistance. Establishing the baseline susceptibility to this insecticide is an essential step for developing and implementing effective resistance management strategies. Here we evaluated the baseline susceptibility to broflanilide for 3 cosmopolitan lepidopteran pest species, Helicoverpa armigera, Plutella xylostella, and Spodoptera frugiperda. Broflanilide exhibited high activity against populations sampled in the major distribution range of these pests in China, with median lethal concentrations (LC50 ) ranging between 0.209 and 0.684, 0.076 and 0.336, and 0.075 and 0.219 mg/L for H. armigera, P. xylostella, and S. frugiperda, respectively. Among-population variability in susceptibility to broflanilide was moderate for H. armigera (3.3-fold), P. xylostella (4.4-fold), and S. frugiperda (2.9-fold). The recommended diagnostic concentrations for H. armigera, P. xylostella, and S. frugiperda were 8, 4, and 2 mg/L, respectively. Little or no cross-resistance to broflanilide was detected in 3 diamide-resistant strains of P. xylostella and 1 spinosyns-resistant strain of S. frugiperda. Our results provide critical information for the development of effective resistance management programs to sustain efficacy of broflanilide against these key lepidopteran pests.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Spodoptera , Diamida/farmacologia , Resistência a Inseticidas , Larva
14.
Sci Rep ; 12(1): 16706, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202979

RESUMO

Evolution of pest resistance reduces the benefits of widely cultivated genetically engineered crops that produce insecticidal proteins derived from Bacillus thuringiensis (Bt). Better understanding of the genetic basis of pest resistance to Bt crops is needed to monitor, manage, and counter resistance. Previous work shows that in several lepidopterans, resistance to Bt toxin Cry2Ab is associated with mutations in the gene encoding the ATP-binding cassette protein ABCA2. The results here show that mutations introduced by CRISPR/Cas9 gene editing in the Helicoverpa zea (corn earworm or bollworm) gene encoding ABCA2 (HzABCA2) can cause resistance to Cry2Ab. Disruptive mutations in HzABCA2 facilitated the creation of two Cry2Ab-resistant strains. A multiple concentration bioassay with one of these strains revealed it had > 200-fold resistance to Cry2Ab relative to its parental susceptible strain. All Cry2Ab-resistant individuals tested had disruptive mutations in HzABCA2. We identified five disruptive mutations in HzABCA2 gDNA. The most common mutation was a 4-bp deletion in the expected Cas9 guide RNA target site. The results here indicate that HzABCA2 is a leading candidate for monitoring Cry2Ab resistance in field populations of H. zea.


Assuntos
Bacillus thuringiensis , Mariposas , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Produtos Agrícolas/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Humanos , Resistência a Inseticidas/genética , Larva/genética , Mariposas/genética , Mariposas/metabolismo , Plantas Geneticamente Modificadas/genética , RNA Guia de Cinetoplastídeos/metabolismo , Zea mays/genética
15.
Can J Aging ; 41(3): 320-326, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35859362

RESUMO

To better evaluate the benefits of a possible increase in the normal retirement age, this article proposes to examine recent trends in the health status of Canadians between 45 and 70 years of age. Using the Sullivan method, trends from 2000 to 2014 in partial disability-free life expectancy (PDFLE) between the ages of 45 and 70 years are computed. Disability is estimated using attributes of the Health Utility Index correlated with the capacity to work, and is looked at by level of severity. Data from the Canadian Community Health Survey were used to estimate the prevalence of disability. Results reveal a slight increase in partial life expectancy between the ages of 45 and 70, and a larger number of those years spent in poor health since the beginning of the 2000s. Hence, this study brings no evidence in support of the postponement of the normal retirement age if this policy were solely based on gains in life expectancy.


Assuntos
Pessoas com Deficiência , Expectativa de Vida Saudável , Idoso , Canadá/epidemiologia , Nível de Saúde , Humanos , Expectativa de Vida
16.
Pest Manag Sci ; 78(10): 3973-3979, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35633103

RESUMO

BACKGROUND: Transgenic crops that make insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized management of some pests. However, evolution of resistance to Bt toxins by pests diminishes the efficacy of Bt crops. Resistance to crystalline (Cry) Bt toxins has spurred adoption of crops genetically engineered to produce the Bt vegetative insecticidal protein Vip3Aa. Here we used laboratory diet bioassays to evaluate responses to Vip3Aa by pink bollworm (Pectinophora gossypiella), one of the world's most damaging pests of cotton. RESULTS: Against pink bollworm larvae susceptible to Cry toxins, Vip3Aa was less potent than Cry1Ac or Cry2Ab. Conversely, Vip3Aa was more potent than Cry1Ac or Cry2Ab against laboratory strains highly resistant to those Cry toxins. Five Cry-susceptible field populations were less susceptible to Vip3Aa than a Cry-susceptible laboratory strain (APHIS-S). Relative to APHIS-S, significant resistance to Vip3Aa did not occur in strains selected in the laboratory for > 700-fold resistance to Cry1Ac or both Cry1Ac and Cry2Ab. CONCLUSIONS: Resistance to Cry1Ac and Cry2Ab did not cause strong cross-resistance to Vip3Aa in pink bollworm, which is consistent with predictions based on the lack of shared midgut receptors between these toxins and previous results from other lepidopterans. Comparison of the Bt toxin concentration in plants relative to the median lethal concentration (LC50 ) from bioassays may be useful for estimating efficacy. The moderate potency of Vip3Aa against Cry1Ac- and Cry2Ab-resistant and susceptible pink bollworm larvae suggests that Bt cotton producing this toxin together with novel Cry toxins might be useful as one component of integrated pest management. © 2022 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Produtos Agrícolas/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Gossypium/genética , Gossypium/metabolismo , Proteínas Hemolisinas/genética , Resistência a Inseticidas/genética , Larva/fisiologia , Mariposas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
17.
Insects ; 13(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35447802

RESUMO

Given that older Aedes aegypti (L.) mosquitoes typically pose the greatest risk of pathogen transmission, the capacity to age grade wild Ae. aegypti mosquito populations would be a valuable tool in monitoring the potential risk of arboviral transmission. Here, we compared the effectiveness of near-infrared spectroscopy (NIRS) to age grade field-collected Ae. aegypti with two alternative techniques-parity analysis and transcript abundance of the age-associated gene SCP1. Using lab-reared mosquitoes of known ages from three distinct populations maintained as adults under laboratory or semi-field conditions, we developed and validated four NIRS models for predicting the age of field-collected Ae. aegypti. To assess the accuracy of these models, female Ae. aegypti mosquitoes were collected from Maricopa County, AZ, during the 2017 and 2018 monsoon season, and a subset were age graded using the three different age-grading techniques. For both years, each of the four NIRS models consistently graded parous mosquitoes as significantly older than nulliparous mosquitoes. Furthermore, a significant positive linear association occurred between SCP1 and NIRS age predictions in seven of the eight year/model combinations, although considerable variation in the predicted age of individual mosquitoes was observed. Our results suggest that although the NIRS models were not adequate in determining the age of individual field-collected mosquitoes, they have the potential to quickly and cost effectively track changes in the age structure of Ae. aegypti populations across locations and over time.

18.
Genetics ; 221(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35234875

RESUMO

Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis have advanced pest management, but their benefits are diminished when pests evolve resistance. Elucidating the genetic basis of pest resistance to Bacillus thuringiensis toxins can improve resistance monitoring, resistance management, and the design of new insecticides. Here, we investigated the genetic basis of resistance to Bacillus thuringiensis toxin Cry1Ac in the lepidopteran Helicoverpa zea, one of the most damaging crop pests in the United States. To facilitate this research, we built the first chromosome-level genome assembly for this species, which has 31 chromosomes containing 375 Mb and 15,482 predicted proteins. Using a genome-wide association study, fine-scale mapping, and RNA-seq, we identified a 250-kb quantitative trait locus on chromosome 13 that was strongly associated with resistance in a strain of Helicoverpa zea that had been selected for resistance in the field and lab. The mutation in this quantitative trait locus contributed to but was not sufficient for resistance, which implies alleles in more than one gene contributed to resistance. This quantitative trait locus contains no genes with a previously reported role in resistance or susceptibility to Bacillus thuringiensis toxins. However, in resistant insects, this quantitative trait locus has a premature stop codon in a kinesin gene, which is a primary candidate as a mutation contributing to resistance. We found no changes in gene sequence or expression consistently associated with resistance for 11 genes previously implicated in lepidopteran resistance to Cry1Ac. Thus, the results reveal a novel and polygenic basis of resistance.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/toxicidade , Estudo de Associação Genômica Ampla , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/toxicidade , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Mariposas/genética , Mariposas/metabolismo , Plantas Geneticamente Modificadas/genética , Zea mays/genética
19.
J Econ Entomol ; 114(5): 1934-1949, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34505143

RESUMO

The recent invasion of Africa by fall armyworm, Spodoptera frugiperda, a lepidopteran pest of maize and other crops, has heightened concerns about food security for millions of smallholder farmers. Maize genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) is a potentially useful tool for controlling fall armyworm and other lepidopteran pests of maize in Africa. In the Americas, however, fall armyworm rapidly evolved practical resistance to maize producing one Bt toxin (Cry1Ab or Cry1Fa). Also, aside from South Africa, Bt maize has not been approved for cultivation in Africa, where stakeholders in each nation will make decisions about its deployment. In the context of Africa, we address maize production and use; fall armyworm distribution, host range, and impact; fall armyworm control tactics other than Bt maize; and strategies to make Bt maize more sustainable and accessible to smallholders. We recommend mandated refuges of non-Bt maize or other non-Bt host plants of at least 50% of total maize hectares for single-toxin Bt maize and 20% for Bt maize producing two or more distinct toxins that are each highly effective against fall armyworm. The smallholder practices of planting more than one maize cultivar and intercropping maize with other fall armyworm host plants could facilitate compliance. We also propose creating and providing smallholder farmers access to Bt maize that produces four distinct Bt toxins encoded by linked genes in a single transgene cassette. Using this novel Bt maize as one component of integrated pest management could sustainably improve control of lepidopteran pests including fall armyworm.


Assuntos
Bacillus thuringiensis , Animais , Bacillus thuringiensis/genética , Endotoxinas , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/genética , África do Sul , Spodoptera , Estados Unidos , Zea mays/genética
20.
Sci Rep ; 11(1): 10377, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001946

RESUMO

Crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt) have many benefits and are important globally for managing insect pests. However, the evolution of pest resistance to Bt crops reduces their benefits. Understanding the genetic basis of such resistance is needed to better monitor, manage, and counter pest resistance to Bt crops. Previous work shows that resistance to Bt toxin Cry2Ab is associated with mutations in the gene encoding the ATP-binding cassette protein ABCA2 in lab- and field-selected populations of the pink bollworm (Pectinophora gossypiella), one of the world's most destructive pests of cotton. Here we used CRISPR/Cas9 gene editing to test the hypothesis that mutations in the pink bollworm gene encoding ABCA2 (PgABCA2) can cause resistance to Cry2Ab. Consistent with this hypothesis, introduction of disruptive mutations in PgABCA2 in a susceptible strain of pink bollworm increased the frequency of resistance to Cry2Ab and facilitated creation of a Cry2Ab-resistant strain. All Cry2Ab-resistant individuals tested in this study had disruptive mutations in PgABCA2. Overall, we found 17 different disruptive mutations in PgABCA2 gDNA and 26 in PgABCA2 cDNA, including novel mutations corresponding precisely to single-guide (sgRNA) sites used for CRISPR/Cas9. Together with previous results, these findings provide the first case of practical resistance to Cry2Ab where evidence identifies a specific gene in which disruptive mutations can cause resistance and are associated with resistance in field-selected populations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Toxinas de Bacillus thuringiensis/genética , Gossypium/parasitologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Animais , Bacillus thuringiensis/genética , Sistemas CRISPR-Cas/genética , Humanos , Larva/efeitos dos fármacos , Larva/genética , Larva/patogenicidade , Lepidópteros/efeitos dos fármacos , Lepidópteros/genética , Lepidópteros/patogenicidade , Mariposas/genética , Mariposas/patogenicidade , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...